State-driven Testing: An
Innovation in Ul Test Automation

Dietmar Strasser
Sr. Manager, Testing - AMQ
dietmar.strasser@microfocus.com

MICRO
FOCUS

Leading the Evolution

Evolution of Test Automation

Keyword Driven Testing
Scripting

Record/Replay

What is Keyword-driven Testing (KDT)

« KDT is a known and well accepted test automation technique that many mature
development organizations use in order to overcome the disadvantages of simple
record/playback test automation

« KDT provides a mechanism for mapping an Application Under Test (AUT) to a set of
defined and well understood keywords

« Test designers, mostly non-technical people, assemble test cases using these
keywords

» Test cases can be developed without programming knowledge

MICRO
FOCUS

Leading the Evolution

What is a Keyword?

+ Keyword describes functional elementary actions

Low-level keyword (one action on 1 object), e.g. entering a username into a textfield.

Textfield (username) SetText <username>

High-level keyword (a combination of other keywords in a meaningful unit), e.g. logging in.

Textfield (domain) SetText <domain>
Textfield (username) SetText <username>
Textfield (password) SetText <password>

Button (login) Click One left click

Source:

http://en.wikipedia.org/wiki/Keyword-driven_testing
http://en.wikipedia.org/wiki/Keyword-driven_testing
http://en.wikipedia.org/wiki/Keyword-driven_testing

Advantages of Keyword-driven
Testing (KDT)

KDT addresses the problem that Business Analysts usually do not have

test automation expertise and Test Automation Engineers do not have
domain knowledge

Test scripts document the functionality of the AUT in a tabular format
Separation of Test Design and Test Implementation

Ease of maintenance

Can be used for manual and automated testing

Independent from Ul driver

Shortcoming: Keyword-driven Testing

“While keyword-driven sounds wonderful, it is not a magical
methodology that will solve all automation problems and cure
world hunger. | worked on a keyword-driven project while | was
an employee of a big corporation. We had an elaborate in-
house tool, that could compose the keywords into larger blocks
of actions, which were also reusable in tests. The project was a
failure. The library of keywords became so huge that no one
could figure out which keyword should be used in which
context.”

Source:

http://testautomationblog.com/2010/05/16/keyword-driven-automated-testing/
http://testautomationblog.com/2010/05/16/keyword-driven-automated-testing/
http://testautomationblog.com/2010/05/16/keyword-driven-automated-testing/
http://testautomationblog.com/2010/05/16/keyword-driven-automated-testing/
http://testautomationblog.com/2010/05/16/keyword-driven-automated-testing/
http://testautomationblog.com/2010/05/16/keyword-driven-automated-testing/
http://testautomationblog.com/2010/05/16/keyword-driven-automated-testing/

MICRO
FOCUS

Leading the Evolution*

Next Generation of Test Automation

State Driven Testing

Overview

State Driven Testing (SDT) =

Keyword Driven Testing + (Ul) State Management

-

 State Driven Testing (SDT) addresses exactly the issues of maintainability and

complexity of Keyword Driven Testing by providing a Ul state transition model as
the core concept.

« By defining the state transitions of Ul objects the set of allowed Ul actions

(keywords) at a specific point in a test script can be minimized to a few possible
(tens) instead of all available (thousands).

MICRO
FOCUS

Leading the Evolution ™

SDT Process — Framework Definition

SDT Test Framework

Definition

SDT DSL Editor

.sdt

AUT
SDT Model

/

MICRO
us

FOC

Leading the Evolution

SDT Sample App Login

User:

Fr=t 4>
ColumnA | ColumnB | ColumnC
TestObject Login
acd ab0 o -))
aal abl acl DataField String mUserName = "admin™
; ; _ "
a2 ab2 2 DataField String mPassword = "top secret

TestMethod setUserNameAndPassword (String username="admin", String password="top_secret")
TestMethod selectCancel () Returns Start
TestMethod selectOk() Returns Main

Edit Delete

StateTransition
HewhppState (Main)

TestObject Main
TestMethod selectA() Returns AGrid
StateTransition

Cadfe]

SetAppState (Main, AGrid)
Column A Column B TestMethod selectB() Returns BGrid
bald bbo StateTransition
bal bbl SetAppState (Main,BGrid)
ba2 bb2 TestMethod selectLogout() Returns Login

StateTransition
SethppState (Login)

N NP W L W P L A PRI

Define Test objects, test methods and state transitions using SDT DSL

Definitions (1)

Test object

A Test object consists of one to many Test methods that represent actions against the AUT
(Application Under Test). Typically Test objects are used to structure the test framework so
that all actions available for a specific Ul container of the AUT like a dialog, a tree-view, a
data-grid, a pane, a frame, or a menu are represented as methods of the Test object.

Test method
Represents an action against an AUT like entering data, verifying response data or
navigating in the application.

State transition

A State transition is associated to a test method and defines how the accessible test
objects (=application state) change after executing the test method. Multiple state transition
methods can be used to change the application state.

State transition methods
A State transition method can be used to change the application state.

Definitions (2)

Application state
Represents the list of test objects that are accessible at a specific position in the test case.

Application start state

Special application state represented by the list of Test objects which is used to describe the first possible
interactions a user can do with an AUT.

Application state stack

An Application state stack provides a mechanism to maintain multiple application states in a stack (a last
in, first out (LIFO)). Therefore application states can be easily re-established to former states.

New state TO1, TO2,TO3

Pusw/‘ Pop

Current state—>| TO1, TO2, TO3

TO1, TO4
TO1

TO1-TOS5: Test Objects

5 State Transition Methods

NewAppState (<list of test objects>)
Creates a new application state representing the list of test objects provided as input, puts it
on the application state stack and sets the current state to the newly created state.
RestoreAppState
Removes the existing application state from the application state stack and activates the
previous state.
AddAppState (<list of test objects>)
Adds the list of test objects provided as input to the current application state. Former test
objects of the current state are kept.
RemoveAppState (<list of test objects>)
Removes the list of test objects provided as input to the current application state (if existing
in the current application state)
SetAppState (<list of test objects>)

Sets the current application state to the list of test objects provided as input. Former Test
objects of the current state are deleted.

MICRO
FOCUS

Leading the Evolution

SDT Test Framework Structure

1 StartObject
1..n TestObject

0..1 Extends <Test Object>
0..n DataField

Data Types: Boolean, Integer or String

1..n TestMethod

0..4 Parameters

Data Types: Boolean, Integer or String; limited to <=4

0..1 Returns <Test Object> or <simple datatype value>

0O..n StateTransition

5 different State Transition Methods (NewAppState,
RestoreAppState, AddAppState, SetAppState or
RemoveAppState)

MICRO
FOCUS

Leading the Evolution ™

SDT Process — Interface Code
Generation

SDT Test Framework

Definition

SDT DSL Editor

.sdt

Jjava

AUT Test Object
SDT Model Interfaces

/ _/_

generates

4= 50T TestFrameworkForsamplefpp w086
SDT Test Framework Code Generation 4 (@ src

a 1 com.borland.silk.sdt.sampletestinterfacesDSL

> m Adction.java
i [J] AbstractDialog.java
B N ", - - [J] AEditDialog.java
3 m AGrid.java
TestObject Login spe
DataField String mUserName = "admin™ [> m BGrId'_I ava
DataField String mPassword = "top secret” [)- m LDg”‘l Java
TestMethod setUserNameAndPassword (String username="admin", String password="top_secret") - -
TestMethod selectCancel () Returns Start D‘ m Ma|r|,_|a1.ra
TestMethod selectOk() Returns Main .
StateTransition [m Start._|a1.ra
NewAppState (Main) . .
b [J] TestObjectsD5SL.java
TestObject Main [* m Utils._iava
TestMethod selectA() Returns AGrid . . .
StateTransition 4 B} com.borland.silk.sdt.sampletestinterfacesDSL_impl
SetAppState (Main,AGrid)
TestMethod sal?c?B() Returns BGrid [m Mctionlmpl.java
StateTransition
SetAppstate (Main, BGrid) [> m AbstractDialoglmpl.java
TestMethod selectLogout() Returns Login E
StateTransition M M M
e Login » [J] AEditDialoglmpl java
o [J] AGridimpljava

N LN b LW W Y N WY P [m BGridlmpl.java
i [J] Leginlmpljava
&[4 Mainlmpl.java
o [X] Sdtlnit.java
i [J] StartImpljava
(4] Utilslmpl.java

SDT Framework Definition = Java Interface Classes

Implementation

SDT Process — Framework

SDT Test Framework

Definition

SDT DSL Editor

.sdt

AUT
SDT Model

/

generates

Jjava

MICRO
FOCUS

Leading the Evolution ™

Test Object
Interfaces

/

Implementation

Java IDE

Implements

Jjava

Test Object
Classes

SDT Process — Test Design &

Execution

Jjava

MICRO
FOCUS

Leading the Evolution

Test Design

Test Object
Interfaces

/

Jjava

Test Object J,
Classes

used for application state calculation

reads/writes

SDT Editor

Jjava

Junit Test
classes

executes

Application State Engine

An Application state engine calculates the application state (accessible Test objects) for a
sequence of actions based on the application state transitions defined for the test methods in the
test framework by using an application state stack.

It calculates:

Which test objects are accessible when appending an action at the end of a sequence of
actions.

Which test objects and test methods are accessible when inserting an action within a
sequence of actions.

Which test objects and test methods can be changed for an existing test script step without
breaking state transitions for succeeding actions.

Which consecutive sequence of actions can be deleted from a sequence of actions without
breaking state transitions (a broken state transition causes actions that are not reachable
through the state transitions of the predecessor actions).

MICRO
FOCUS

Leading the Evolution*

; |testCasel »
Mo | Test Object Test Method Parameter 1 Farameter 2 Parameter 3 Parameter 4 Return
1 Start setllserMamesndPassword Liger pravd
2 Start selectDlk flain
3 Main selects AGrid
4 AGrid selectRow 1 Aaction
Cammand
Line |4 |
Test Object AdGrid i#
Test Method ;
MaIN ~
Row index 1 “
Test Step
Commands

Accessible Test
Objects

[=k Append] [== Delete Last] [= Insert] [=k Delete] L, Locate

SDT Test Case Example: “Create
Manual Test”

L] Ed (= = Test Case: reateManual Testl
Script
Mo Testfbject _ Test Method Parameter 1 Parameter 2 Parameter 3 FParameter 4
w1 TmStart basestate_LoginandSelectProj... localhost: 19120 admin admin Demo Project
w2 TrmMain gotoTestPlan
& 3 TpTree selectFolderModeByMarme Application Access,/Login
&' 4 TpFolder openContexiienu
w’ 9 TpFolderContexiviznu newChild TestDefinition
w' 6 TpTestDefinitionDig sethame MytanualTestDefinition1
& 7 TpTestDefinitionDig setDescription this is a description
&' B TpTestDefinitionDlg nexthvanualTest
w9 TpManualTestPropertieshig setPlannedTime 1:15
& 10 TpManualTestPropertiesDlg next
&' 11 TpHewTestStepDlg sethame MyStephamel
w12 TphlewTestStepDlg setactionDescription My Action Descriptionl
w’ 13 TpMewTestStepDlg setExpectedresults Wy Expected Result
& 14 TpMewTestStepDlg ok
&' 15 TpTree selectManualTestiodeByName Application Access/Logindyianual..
w16 TpManualTest openContexienu
& 17 TpManualTestContexthenu delete
&’ 18 TmConfirmationDlg yes
w19 TmMain logout
<5

Press SDT Test Design Editor ,Locate’
Button (Visual Test Object Location)

RREIEN= N Test Case: | testUpdateGridA
Script
No Test Object Test Method
4 Main selectd
5 AGrid getRows
6 Utils werifyNumber
7 AGnd selectRow
8 Ahction selectEdit
9 AEditDialeg setCalumnl
10 AEditDialog selectOkAndGotoB
11 Main selectd
4
Command
Line Cl
Test Object | AditDialog
Test Method [setColumnt
value paramValue
’ 4 Append] ’ == Delete Last] ’ Iﬁ,lr‘lser‘c] ’ ﬁ Delete] [@\ Loca’(e]

A e i,

S WIWIZENE S NS U WYY Ve

MICRO
FOCUS

Leading the Evolution*

-

Edit A

Column

aall

aal

A paramValue
B: ab2
G ac?

| ok || GotoB || cancel | ||

LS

| New |[Edit || Delete |

SDT Process

SDT Test Framework

MICRO
FOCUS

Leading the Evolution

Test Design

Definition

SDT DSL Editor

.sdt

AUT
SDT Model

/

generates

Jjava

Test Object

'cat‘_;n state calculation

Interfaces

/

Implementation

Java IDE

Implements

Jjava

Test Object

Classes

used for appli

reads/writes

SDT Editor

Jjava

Junit Test
classes

executes

SDT Framework Definition - Persona

Test Design
—>> SDT Editor |_
Test Analyst, 8 0
Domain Specialist s . 3
E Jjava x
g
_/ Junit Test || .«

classes

Implementation java

Test Object
Classes

Java IDE

SDT Test cases - Persona

SDT Test Framework

Definition

SDT DSL Editor

.sdt

defines

AUT
» SDT Model

Implementation

Java IDE

generates

Jjava

—> Test Object

Implements

Interfaces

Jjava

|,/ Test Object
Classes

used for application state calculation

Test Analyst,
Domain

Specialist,
Product Owner

i

SDT Framework Implementation -

Persona
SDT Test Framework Test Design
Definition .
] | S — SDT Editor _
SDT DSL Editor s
" 3 g 2
O sdt 2 : S 2 3
= = java O B : D
@ c = i Jjava x
T oy @ o
AUT — Test Object || & Junit Test || led
L, SDT Model Interfaces S |
2 = classes
)

Automation Engineer,

Developer

10 Good Reasons to use SDT

Allows easy and efficient collaboration in a cross functional team, consisting of Business
Analysts, developers and testers

Visual test object location mechanism allows easy extension of existing SDT Test Framework
Adaptable to different software development processes, like Agile, V-Model or pure waterfall
Clear, readable test cases usable as test documentation, which is always up-to-date
Possible to use same test case for manual, semi-automated and automated test execution
Supports test-driven development (create tests before GUI exists)

Consistent approach to create test cases on an integration, system and acceptance level
Test cases can be written by non-technical and technical people

Dramatically decreases costs of maintenance

Low or even no trainings effort to use SDT Test Framework for assembling test cases (just
knowledge about AUT is needed)

Pilot Project Results

Application Under Test
SilkCentral Test Manager (Test Management Suite)
Development effort spent for this product: > 50 person years

SDT Framework
370 Test objects
3000 Test methods

~90% of AUT functionality in SDT Test Framework defined
~90% of all test objects implemented
Effort for Definition and implementation: 3 person months

SDT Test suite

103 test cases with code coverage of 53% running on 5 configuration (IE6, IE7, IE8, FF 3.0,
FF3.5)

Q&A

