
QA In Kotlin: From a
Compiler Backend To
the Entire Ecosystem
Alexander Zakharenko, Artur Parpibaev JetBrains)

Artur Parpibaev
Kotlin Automation / Performance QA Lead
Cat owner 😺 / Love mountains 🏔 / Fan of Korean culture 󰏮

Alexander Zakharenko
Kotlin Compiler QA Lead
Wine lover 🍷 / Love singing 🎤 / Fan of Paul McCartney 🎸

● What is Kotlin and its ecosystem
● From users to machine code
● Levels of testing
● How we measure quality
● Conclusions

Talk Structure

4

What is Kotlin

What is Kotlin

6

● Announced in 2011 JVM

● Version 1.0 released in 2016

● Kotlin Multiplatform released in 2017

● Preferred language for Android app developers since 2019

● Used by Google, Amazon, Meta, Netflix, Uber, etc.

What is Kotlin and its
ecosystem

What is Kotlin and its ecosystem

Compiler

What is Kotlin and its ecosystem

Compiler

Code editor

What is Kotlin and its ecosystem

Compiler

Code editor

Libraries

What is Kotlin and its ecosystem

Compiler

Code editor

Build system
Libraries

What is Kotlin and its ecosystem

Compiler

Code editor

Build system
Libraries

Kotlin Multiplatform

What is Kotlin and its ecosystem

Compiler

Code editor

Build system
Libraries

Kotlin Multiplatform

Documentation

What is Kotlin and its ecosystem

Compiler

Code editor

Build system
Libraries

Kotlin Multiplatform

Documentation

Support

What is Kotlin and its ecosystem

Compiler

What is Kotlin and its ecosystem

● Kotlin / JVM
● Kotlin / JS
● Kotlin / Native
● Kotlin / Wasm

Compiler

➜ workdir cat main.kt
fun main() {
 println("Hello, Stockholm!")
 stockholm()
}
➜ workdir kotlinc-native -o main.kexe main.kt
main.kt:3:5: error: unresolved reference: stockholm
 stockholm()
 ^

17

What is Kotlin and its ecosystem

Compiler Core Ecosystem
● Kotlin / JVM
● Kotlin / JS
● Kotlin / Native
● Kotlin / Wasm

What is Kotlin and its ecosystem

Compiler
● Gradle / Maven support
Core Ecosystem

● Kotlin / JVM
● Kotlin / JS
● Kotlin / Native
● Kotlin / Wasm

➜ workdir kotlinc hello.kt -include-runtime -d
hello.jar

➜ workdir kotlinc-native -g -enable-assertions -module-name
org.example:enums -no-endorsed-libs -output enums.klib -produce library
-Xshort-module-name=enums -target macos_arm64 -Xmulti-platform hello.kt
➜ workdir kotlinc-native -g -enable-assertions -Xinclude=enums.klib
-no-endorsed-libs -output Enums.framework -produce framework -target
macos_arm64 -Xmulti-platform
➜ workdir clang -framework Foundation,Enums -F . -Xlinker -rpath
-Xlinker . -Xlinker Enums.framework/Versions/A/Enums main.m -o
enums_objc.kexe

➜ workdir ./gradlew build

What is Kotlin and its ecosystem

Compiler
● Gradle / Maven support
● Libraries

Core Ecosystem
● Kotlin / JVM
● Kotlin / JS
● Kotlin / Native
● Kotlin / Wasm

What is Kotlin and its ecosystem

Compiler
● Gradle / Maven support
● Libraries
● Dokka

Core Ecosystem
● Kotlin / JVM
● Kotlin / JS
● Kotlin / Native
● Kotlin / Wasm

What is Kotlin and its ecosystem

Compiler
● Gradle / Maven support
● Libraries
● Dokka

Core Ecosystem IDE Plugin
● Kotlin / JVM
● Kotlin / JS
● Kotlin / Native
● Kotlin / Wasm

What is Kotlin and its ecosystem

Compiler Core Ecosystem
● Endless number of features
○ Project wizards
○ Navigation
○ Quick fixes
○ Refactorings
○ …

IDE Plugin
● Gradle / Maven support
● Libraries
● Dokka

● Kotlin / JVM
● Kotlin / JS
● Kotlin / Native
● Kotlin / Wasm

Project wizard

Refactoring

What is Kotlin and its ecosystem

Kotlin as a Platform

What is Kotlin and its ecosystem

Kotlin Ecosystem
● Kotlin for Data Science

Kotlin as a Platform

Kotlin Notebooks

What is Kotlin and its ecosystem

Kotlin Ecosystem
● Kotlin for Data Science
● Frameworks Ktor, etc.)

Kotlin as a Platform

Ktor features in IDE

What is Kotlin and its ecosystem

Kotlin Ecosystem
● Kotlin for Data Science
● Frameworks Ktor, etc.)
● Compose Multiplatform

Kotlin as a Platform

Compose Multiplatform

Web

Desktop

Mobile

From users to machine
code

40

41

42

43

LLVM

JVM

44

LLVM

JVM

Entry point to the ecosystem

46

Kotlin IDE Plugin
Perception of quality

● Project opens without any red code

Kotlin IDE Plugin
Perception of quality

Red Code tests

● Project opens without any red code ✅
⇒ Red Code tests

Kotlin IDE Plugin
Perception of quality

● Project opens without any red code ✅
⇒ Red Code tests

● Most important Kotlin user scenarios work in a live IDE

Kotlin IDE Plugin
Perception of quality

Kotlin IDE Plugin

Scenarios
○ Kotlin + Java developer
○ Kotlin Android developer
○ Kotlin Spring developer
○ Kotlin Multiplatform developer
○ Kotlin Fullstack JVM  JS) developer
○ and around 20 more

User Workflow scenarios

Kotlin IDE Plugin

Scenarios Use Cases
○ Kotlin + Java developer
○ Kotlin Android developer
○ Kotlin Spring developer
○ Kotlin Multiplatform developer
○ Kotlin Fullstack JVM  JS) developer
○ and around 20 more

Typical developer session

○ Open project → assert import
○ Open .kt file → assert analysis
○ Navigate / refactor → assert K/IDE features
○ Run project → assert run configurations
○ Debug project → assert debugging features
○ Run tests → assert Test Source features
○ + unique cases for platforms

User Workflow scenarios

Developer opens a project

Letʼs wait for the project import

We assert import success

Gradle sync ✅

Project dependencies ✅

Gradle
modules ✅

How it looks in the framework code

Found Bugs Examples

Found Bugs Examples

Found Bugs Examples

● Project opens without any red code ✅
⇒ Red Code tests

● Most important Kotlin user scenarios work in a live IDE ✅
⇒ User Workflow tests

Kotlin IDE Plugin
Perception of quality

● Project opens without any red code ✅
⇒ Red Code tests

● Most important Kotlin user scenarios work in a live IDE ✅
⇒ User Workflow tests

● Features with UI work in a live IDE

Kotlin IDE Plugin
Perception of quality

Kotlin IDE Plugin

● More than 1000 UI-tests
○ Navigation
○ Code Completion
○ Quick Documentation
○ Find Usages
○ Refactorings
○ Code Analysis
○ Project Wizards
○ Convert Java to Kotlin
○ Debuggers JVM, JS, Wasm, Native, Coroutines)
○ Kotlin Bytecode viewer
○ Add Kotlin module to project
○ …

UI testing of the UI-rich features

Code Completion check

Assert completion

Wait for suggestions
to load ✅

Assert completion options & success

Standard library ✅

Project class ✅

Java platform ✅

Wait for suggestions
to load ✅

● Project opens without any red code ✅
⇒ Red Code tests

● Most important Kotlin user scenarios work in a live IDE ✅
⇒ User Workflow scenarios

● Features with UI work in a live IDE ✅
⇒ Feature-based UI-tests

Kotlin IDE Plugin
Perception of quality

69

Kotlin Build Toolchain
How can we assure a build system works well?

… probably by testing Kotlin Gradle Plugin? Or the whole build tooling for Kotlin?

Kotlin Build Toolchain
How can we assure a build system works well?

… probably by testing Kotlin Gradle Plugin? Or the whole build tooling for Kotlin?

Kotlin Build Tools QA Team

… probably by building the entire world*?

Kotlin projects in the most popular ways of using

Kotlin Build Toolchain
And how can we assure we build any code smoothly…

User Projects

Does not look realistic

User Projects
The concept

Take popular apps Build with the latest dev Kotlin Catch all the bugs

● Important internal JetBrains Kotlin projects
○ Intellij IDEA
○ Kotlin
○ Kotlin Libraries
○ Teamcity
○ YouTrack
○ etc.

User Projects

● Important internal JetBrains Kotlin projects
● Open-source largest and diverse Kotlin projects
○ JVM
○ JS
○ Mobile Multiplatform
■ iOS
■ Android

○ Native Desktop

User Projects

● Important internal JetBrains Kotlin projects
● Open-source largest and diverse Kotlin projects

User Projects

Over 40 major+ regressions was found

In 2 years

On a single project out of 50

79

80

Compiler

● Analysis (i.e. syntax highlighting)

● Language features

● Intermediate Representation IR) generation

Compiler frontend

81

82

Just a simple code snippet with a 🪲

83

Just a simple code snippet and a compiler crash 💥

● JVM

○ Java interop

● Native

○ C, ObjC interops, Swift Export

○ Dealing with targets

○ Pict

■ It helps with the problem of unclear coverage while having a lot of flags — we trust pairwise testing

● WASM and JS

○ JS/TS interop

Compiler backend

84

https://youtrack.jetbrains.com/issue/KT56464/KNAllow-HiddenFromObjC-for-classes

Compiler backend

A task 󰙤

Compiler backend

Still a task 󰙤

Compiler backend

A bug 😍

Compiler backend
Autotests

import kotlin.test.*

@Test

fun addition() {

 assertEquals(42, 40 + 2)

}

@Test

fun multiplication () {

 assertEquals(42, 21 * 2)

}

Compiler backend
Autotests

import kotlin.test.*

@Test

fun addition() {

 assertEquals(42, 40 + 2)

}

@Test

fun multiplication () {

 assertEquals(42, 21 * 2)

}

Gradle tasks and arguments: :nativeCompilerTest <-init-script
/opt/buildAgent/plugins/gradle-runner/scripts/init_since_8.gradle
<-init-script /opt/buildAgent/temp/agentTmp/build-scan-init.gradle
-Pteamcity=true <-no-watch-fs -Pkotlin.build.scan.url=XXX
-Dscan.tag.kotlin-dev -Pkotlin.build.testRetry.maxRetries=0
-Pkotlin.build.isObsoleteJdkOverrideEnabled=true <-parallel
<-continue -Pkotlin.native.enabled=true
-Pkotlin.internal.native.test.nativeHome=/opt/buildAgent/work/17e640
964edd2053/test_dist -Pkotlin.incremental=false
-Pkotlin.internal.native.test.mode=TWO_STAGE_MULTI_MODULE
-Pkotlin.internal.native.test.optimizationMode=DEBUG
-Pkotlin.internal.native.test.cacheMode=STATIC_EVERYWHERE
-Pkotlin.internal.native.test.gcType=CMS
-Pkotlin.internal.native.test.gcScheduler=ADAPTIVE
-Pkotlin.internal.native.test.alloc=CUSTOM
-Pkotlin.internal.native.test.target=ios_simulator_arm64
-Pbuild.number=2.1.0-dev-8366
-Pkotlin.native.tests.tags=frontend-fir -Dorg.gradle.daemon=false -s
-b build.gradle.kts

● Different aggregate test configurations

● Tagged tests

● Optimized test configurations

○ Pairwise testing as we have a lot of compiler flags — for each pair of input parameters, tests
all possible discrete combinations of those parameters

■ Coverage is clarified at the level of configurations

■ Less tests

○ Some “must haveˮ configurations on top

Compiler backend

90

Autotests

Compiler backend

91

Autotests — PICT

Mode: TwoStage

Optimization Mode: Debug, Optimized

Cache Mode: No, StaticOnlyDist, StaticEverywhere, StaticPerFile

GC Type: PMCS (50), CMS

GC Scheduler: Adaptive

Allocator: Custom

Thread State Checker: Disabled

Target: IOS_SIMULATOR_ARM64 (50), MINGW_X64, LINUX_X64

Test Set: onlyK2

IF [Cache Mode] <> "No" THEN [Optimization Mode] = "Debug";

IF [Cache Mode] = "No" AND [Optimization Mode] = "Optimized" THEN [Target] <> "MINGW_X64";

IF [Target] = "MINGW_X64" THEN [Optimization Mode] <> "Optimized" AND [Cache Mode] = "No";

Parameter Name

Possible Values

Weight

Conditional Constraints

Compiler backend

92

Autotests — PICT

Kotlin is a great
language

Such a pleasure
to test it

Levels of testing

95

Unit tests

96

Unit tests

Integration
component tests

97

Unit tests

Integration
component tests

UI tests

98

Unit tests

Integration
component tests

UI tests

E2E
tests

99

Unit tests

Integration
component tests

UI tests

E2E
tests

100

Unit tests

Integration
component tests

UI tests

E2E
testsExploratory

QA

Performancetests

Itʼs all fine. But what did we
miss?

How we measure quality

How we measure quality

Vsevolod Tolstopyatov

Kotlin Project Lead

“Hey Artur, do we have a reliable
way to measure quality?ˮ

How we measure quality

“Hey Artur, do we have a reliable
way to measure quality?ˮ

🚪󰻁
Vsevolod Tolstopyatov

Kotlin Project Lead

○ Coverage model is very complicated and expensive
■ Instead – the quality criterias in each QA team

How we measure quality
Or the excuses not to

○ Coverage model is very complicated and expensive
■ Instead – the quality criterias in each QA team

⇒

○ Feedback ❗
■ Monitor regressions reported by users vs devs + QAs
■ Closely look at the JetBrains internal developers issues
■ Analyze the internal and external survey data

How we measure quality
Or the excuses not to

According to Kotlin Developer Survey, the dissatisfaction
with Quality and Stability improved a lot

How we measure quality
Or the excuses not to

2023

25.5%
2025

15.0%

How we measure quality
Or the excuses not to

We are lucky to work without coming up with
pseudo-metrics of quality :)

How we measure quality
Or the excuses not to

We are lucky to work without coming up with
pseudo-metrics of quality :)

CSAT for Kotlin 90% 🎉
CSAT for Kotlin support in IDE 85% 🎉

How we measure quality
Or the excuses not to

We are lucky to work without coming up with
pseudo-metrics of quality :)

* but of course there is a room for improvements

 CSAT for Kotlin 90% 🎉*
 CSAT for Kotlin support in IDE 85% 🎉*

111

How we measure quality

Conclusions

Takeaways

○ Programming language is an entire ecosystem

Takeaways

○ Programming language is an entire ecosystem
○ In such a complex system imitation of a user from different angles is a must

Takeaways

○ Programming language is an entire ecosystem
○ In such a complex system imitation of a user from different angles is a must
○ We donʼt need to calculate coverage to satisfy our users

Takeaways

○ Programming language is an entire ecosystem
○ In such a complex system imitation of a user from different angles is a must
○ We donʼt need to calculate coverage to satisfy our users
○ Even though it is tooling for developers, it is still a product that depends on the feedback

Thank you!
Do connect with us on LinkedIn!

Artur Alexander

Thank you!

We are hiring!

