
Dietmar Strasser

Sr. Manager, Testing - AMQ

dietmar.strasser@microfocus.com

State-driven Testing: An

Innovation in UI Test Automation

Evolution of Test Automation

Record/Replay

Scripting

Keyword Driven Testing

What is Keyword-driven Testing (KDT)

• KDT is a known and well accepted test automation technique that many mature

development organizations use in order to overcome the disadvantages of simple

record/playback test automation

• KDT provides a mechanism for mapping an Application Under Test (AUT) to a set of

defined and well understood keywords

• Test designers, mostly non-technical people, assemble test cases using these

keywords

• Test cases can be developed without programming knowledge

What is a Keyword?

• Keyword describes functional elementary actions

Object Action Data

Textfield (username) SetText <username>

Object Action Data

Textfield (domain) SetText <domain>

Textfield (username) SetText <username>

Textfield (password) SetText <password>

Button (login) Click One left click

Low-level keyword (one action on 1 object), e.g. entering a username into a textfield.

High-level keyword (a combination of other keywords in a meaningful unit), e.g. logging in.

Source: http://en.wikipedia.org/wiki/Keyword-driven_testing

http://en.wikipedia.org/wiki/Keyword-driven_testing
http://en.wikipedia.org/wiki/Keyword-driven_testing
http://en.wikipedia.org/wiki/Keyword-driven_testing

Advantages of Keyword-driven

Testing (KDT)

• KDT addresses the problem that Business Analysts usually do not have

test automation expertise and Test Automation Engineers do not have

domain knowledge

• Test scripts document the functionality of the AUT in a tabular format

• Separation of Test Design and Test Implementation

• Ease of maintenance

• Can be used for manual and automated testing

• Independent from UI driver

Shortcoming: Keyword-driven Testing

“While keyword-driven sounds wonderful, it is not a magical

methodology that will solve all automation problems and cure

world hunger. I worked on a keyword-driven project while I was

an employee of a big corporation. We had an elaborate in-

house tool, that could compose the keywords into larger blocks

of actions, which were also reusable in tests. The project was a

failure. The library of keywords became so huge that no one

could figure out which keyword should be used in which

context.”

Source: http://testautomationblog.com/2010/05/16/keyword-driven-automated-testing/

http://testautomationblog.com/2010/05/16/keyword-driven-automated-testing/
http://testautomationblog.com/2010/05/16/keyword-driven-automated-testing/
http://testautomationblog.com/2010/05/16/keyword-driven-automated-testing/
http://testautomationblog.com/2010/05/16/keyword-driven-automated-testing/
http://testautomationblog.com/2010/05/16/keyword-driven-automated-testing/
http://testautomationblog.com/2010/05/16/keyword-driven-automated-testing/
http://testautomationblog.com/2010/05/16/keyword-driven-automated-testing/

Next Generation of Test Automation

Record/Replay

Scripting

Keyword Driven Testing
State Driven Testing

Overview

• State Driven Testing (SDT) addresses exactly the issues of maintainability and

complexity of Keyword Driven Testing by providing a UI state transition model as

the core concept.

• By defining the state transitions of UI objects the set of allowed UI actions

(keywords) at a specific point in a test script can be minimized to a few possible

(tens) instead of all available (thousands).

State Driven Testing (SDT) =

Keyword Driven Testing + (UI) State Management

SDT Process – Framework Definition

SDT Test Framework

.sdt

AUT

SDT Model

SDT DSL Editor

Definition

d
e
fi
n
e
s

AUT SDT Framework Definition

Define Test objects, test methods and state transitions using SDT DSL

Definitions (1)

• Test object

– A Test object consists of one to many Test methods that represent actions against the AUT

(Application Under Test). Typically Test objects are used to structure the test framework so

that all actions available for a specific UI container of the AUT like a dialog, a tree-view, a

data-grid, a pane, a frame, or a menu are represented as methods of the Test object.

• Test method
– Represents an action against an AUT like entering data, verifying response data or

navigating in the application.

• State transition

– A State transition is associated to a test method and defines how the accessible test

objects (=application state) change after executing the test method. Multiple state transition

methods can be used to change the application state.

• State transition methods

– A State transition method can be used to change the application state.

Definitions (2)

• Application state

– Represents the list of test objects that are accessible at a specific position in the test case.

• Application start state
– Special application state represented by the list of Test objects which is used to describe the first possible

interactions a user can do with an AUT.

• Application state stack
– An Application state stack provides a mechanism to maintain multiple application states in a stack (a last

in, first out (LIFO)). Therefore application states can be easily re-established to former states.

TO1, TO2, TO3

TO1, TO4

TO1

TO1-TO5: Test Objects

Current state

New state

Push

TO1, TO2,TO3

Pop

5 State Transition Methods

• NewAppState (<list of test objects>)

– Creates a new application state representing the list of test objects provided as input, puts it

on the application state stack and sets the current state to the newly created state.

• RestoreAppState

– Removes the existing application state from the application state stack and activates the

previous state.

• AddAppState (<list of test objects>)

– Adds the list of test objects provided as input to the current application state. Former test

objects of the current state are kept.

• RemoveAppState (<list of test objects>)

– Removes the list of test objects provided as input to the current application state (if existing

in the current application state)

• SetAppState (<list of test objects>)

– Sets the current application state to the list of test objects provided as input. Former Test

objects of the current state are deleted.

SDT Test Framework Structure

1 StartObject

1..n TestObject

0..1 Extends <Test Object>

0..n DataField

Data Types: Boolean, Integer or String

1..n TestMethod

0..4 Parameters

Data Types: Boolean, Integer or String; limited to <=4

0..1 Returns <Test Object> or <simple datatype value>

0..n StateTransition

5 different State Transition Methods (NewAppState,

RestoreAppState, AddAppState, SetAppState or

RemoveAppState)

SDT Process – Interface Code

Generation

.java

Test Object

Interfaces

g
e
n
e
ra

te
s

SDT Test Framework

.sdt

AUT

SDT Model

SDT DSL Editor

Definition

d
e
fi
n
e
s

SDT Test Framework Code Generation

SDT Framework Definition Java Interface Classes

SDT Process – Framework

Implementation

.java

Test Object

Interfaces

g
e
n
e
ra

te
s

SDT Test Framework

.sdt

AUT

SDT Model

SDT DSL Editor

Definition

d
e
fi
n
e
s

.java

Test Object

Classes
Java IDE

Implementation

Im
p
le

m
e
n
ts

SDT Process – Test Design &

Execution

.java

Junit Test

classes

SDT Editor

Test Design

e
x
e
c
u
te

s

re
a
d
s
/w

ri
te

s

.java

Test Object

Interfaces

.java

Test Object

Classes

u
s
e
d
 f
o
r

a
p
p
lic

a
ti
o
n
 s

ta
te

 c
a
lc

u
la

ti
o
n

Application State Engine

• An Application state engine calculates the application state (accessible Test objects) for a

sequence of actions based on the application state transitions defined for the test methods in the

test framework by using an application state stack.

• It calculates:

– Which test objects are accessible when appending an action at the end of a sequence of

actions.

– Which test objects and test methods are accessible when inserting an action within a

sequence of actions.

– Which test objects and test methods can be changed for an existing test script step without

breaking state transitions for succeeding actions.

– Which consecutive sequence of actions can be deleted from a sequence of actions without

breaking state transitions (a broken state transition causes actions that are not reachable

through the state transitions of the predecessor actions).

SDT Test Design Editor

SDT Test Case Example: “Create

Manual Test”

Press SDT Test Design Editor ‚Locate„

Button (Visual Test Object Location)

SDT Process

.java

Junit Test

classes

SDT Editor

Test Design

e
x
e
c
u
te

s

re
a
d
s
/w

ri
te

s

.java

Test Object

Interfaces

g
e
n
e
ra

te
s

SDT Test Framework

.sdt

AUT

SDT Model

SDT DSL Editor

Definition

d
e
fi
n
e
s

.java

Test Object

Classes
Java IDE

Implementation

Im
p
le

m
e
n
ts

u
s
e
d
 f
o
r

a
p
p
lic

a
ti
o
n
 s

ta
te

 c
a
lc

u
la

ti
o
n

SDT Framework Definition - Persona

.java

Junit Test

classes

SDT Editor

Test Design

e
x
e
c
u
te

s

re
a
d
s
/w

ri
te

s

.java

Test Object

Interfaces

g
e
n
e
ra

te
s

SDT Test Framework

.sdt

AUT

SDT Model

SDT DSL Editor

Definition

d
e
fi
n
e
s

.java

Test Object

Classes
Java IDE

Implementation

Im
p
le

m
e
n
ts

u
s
e
d
 f
o
r

a
p
p
lic

a
ti
o
n
 s

ta
te

 c
a
lc

u
la

ti
o
n

Test Analyst,

Domain Specialist

SDT Test cases - Persona

.java

Junit Test

classes

SDT Editor

Test Design

e
x
e
c
u
te

s

re
a
d
s
/w

ri
te

s

.java

Test Object

Interfaces

g
e
n
e
ra

te
s

SDT Test Framework

.sdt

AUT

SDT Model

SDT DSL Editor

Definition

d
e
fi
n
e
s

.java

Test Object

Classes
Java IDE

Implementation

Im
p
le

m
e
n
ts

u
s
e
d
 f
o
r

a
p
p
lic

a
ti
o
n
 s

ta
te

 c
a
lc

u
la

ti
o
n

Test Analyst,

Domain

Specialist,

Product Owner

SDT Framework Implementation -

Persona

.java

Junit Test

classes

SDT Editor

Test Design

e
x
e
c
u
te

s

re
a
d
s
/w

ri
te

s

.java

Test Object

Interfaces

g
e
n
e
ra

te
s

SDT Test Framework

.sdt

AUT

SDT Model

SDT DSL Editor

Definition

d
e
fi
n
e
s

.java

Test Object

Classes
Java IDE

Implementation

Im
p
le

m
e
n
ts

u
s
e
d
 f
o
r

a
p
p
lic

a
ti
o
n
 s

ta
te

 c
a
lc

u
la

ti
o
n

Automation Engineer,

Developer

10 Good Reasons to use SDT

1. Allows easy and efficient collaboration in a cross functional team, consisting of Business

Analysts, developers and testers

2. Visual test object location mechanism allows easy extension of existing SDT Test Framework

3. Adaptable to different software development processes, like Agile, V-Model or pure waterfall

4. Clear, readable test cases usable as test documentation, which is always up-to-date

5. Possible to use same test case for manual, semi-automated and automated test execution

6. Supports test-driven development (create tests before GUI exists)

7. Consistent approach to create test cases on an integration, system and acceptance level

8. Test cases can be written by non-technical and technical people

9. Dramatically decreases costs of maintenance

10. Low or even no trainings effort to use SDT Test Framework for assembling test cases (just

knowledge about AUT is needed)

Pilot Project Results

• Application Under Test

– SilkCentral Test Manager (Test Management Suite)

– Development effort spent for this product: > 50 person years

• SDT Framework

– 370 Test objects

– 3000 Test methods

– ~90% of AUT functionality in SDT Test Framework defined

– ~90% of all test objects implemented

– Effort for Definition and implementation: 3 person months

• SDT Test suite

– 103 test cases with code coverage of 53% running on 5 configuration (IE6, IE7, IE8, FF 3.0,

FF3.5)

Q & A

